What is the Z-score for a confidence interval?

RandalRodd

New member
Hi everyone,
Can someone explain how to find the Z-score for a given confidence interval? A simple explanation would be really helpful. Thanks!
 
A Z-score for a confidence interval represents how many standard deviations a value is from the mean and determines the interval’s width. Common Z-scores:
  • 90% confidence: 1.645
  • 95% confidence: 1.96
  • 99% confidence: 2.576

    It’s used in the formula: mean ± Z × (σ/√n).
 
The Z-score for a confidence interval is a value from the standard normal distribution that corresponds to the desired confidence level, used to calculate the margin of error for estimating a population parameter.
 
A Z-score represents how many standard deviations a value is from the mean and is used to calculate confidence intervals. Common Z-scores include 1.96 for 95% confidence, 1.64 for 90%, and 2.58 for 99%. These values help determine the margin of error and the probability range for population estimates.
 
Back
Top